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1 ltis given that

1 -1 -2
A:(o > 1).
0O 0 -3

Write down the eigenvalues @éf and find corresponding eigenvectors.

2 Theintegral , wherenis a non-negative integer, is defined by

1 3
I :J Xe ™ dx.
0

., . d _ .
By con&dermga((x”*le XS) or otherwise, show that

3l n+1)l -e™.

n+3:(

Hence findl6 in terms of e ando.

3  \Verify that if
v,=n(n+1)(n+2) ... (n+m),

then
Vi, —V,=(M+)(n+1)(n+2) ... (n+m).
Given now that
u =M+1(n+2) ... (n+m),
N

find ) u, in terms ofmandN.
n=1

4 Prove by mathematical induction that, for all positive geesn, 10°" + 13" is divisible by 7.

5 Show that ifa # 3 then the system of equations

2X+ 3y + 4z = -5,
4x+ 5y - z =5a+ 15,
6Xx+8y+az=b-2a+ 21,

has a unique solution.

Given thata = 3, find the value ob for which the equations are consistent.
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6 The roots of the equation
X +x+1=0
area, 3, y. Show that the equation whose roots are

do+1 4B+1 4dy+1
o+l B+1° y+1

is of the form

Y’ +py+q=0,
where the numbens andq are to be determined. [5]
Hence find the value of
4o+ 1 ”+ 48 +1 ”+ 4y +1\"
o+1 B+1 y+1)"'
for n= 2 and forn = 3. [4]
7  The curveC has equation
r=101In(1+ 6),
where 0< 6 < 2. Draw a sketch o€. [2]

Use the substitutiow = In(1 + 6) to show that the area of the sector bounded by theaiﬁe}n and
the arc ofC joining the origin to the point wheré = %n is

50(b? — 2b + 2)e® - 100,

whereb = In(1+ 37). [6]

8 Given that

d? d dy 2 _
2y3d—x>2' + 12y3d—§ + 6y2(d—i) + 17yt = 1364

and thatv = y*, show that

d>v  _dv 4

— +6— +34v =26, 4

dx2+6dx+3v 6e [4]
Hence find the general solution fgin terms ofx. [5]

9 With O as origin, the point#, B, C have position vectors

i, I+j, i+j+2kK
respectively. Find a vector equation of the common perpetali of the linesAB andOC. [6]
Show that the shortest distance between the Ik@2andOC is % V5. [2]

Find, in the formax + by + cz = d, an equation for the plane containid®B and the common
perpendicular of the lineAB andOC. [3]
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10 The curveC has equation
y =X+ Asin(X+Y),

whereAl is a constant, and passes through the p@i@n, %n) Show thatC has no tangent which is
parallel to they-axis. [5]

Show that, afA,
dzy 1 2
@:2—&75(4—71:)(71:4‘2) . [5]

11 Prove de Moivre’s theorem for a positive integral exponent:

for all positive integers, (cosé +isin®)" = cosnéd +isinneé. [5]

Use de Moivre's theorem to show that

cos® = 64cod 6 —112co8 6 + 56 cos 6 — 7 cosh. [4]

Hence obtain the roots of the equation
128" - 224¢ +112C - 14x+1=0

in the form coxyn, whereq is a rational number. [4]
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5
12 Answer onlyone of the following two alternatives.
EITHER

The curveC has equation

X +ox+1
- 2x+3
whereq is a positive constant.
(i) Obtain the equations of the asymptote<Cof [3]
(i) Find the value ofj for which thex-axis is a tangent t&, and sketclC in this case. [4]

(iii) SketchC for the caseg = 3, giving the exact coordinates of the points of intersectbC with
the x-axis. [3]

(iv) Itis given that, for all values of the constantthe line
_ 3, , 1
y=2AX+3A+35(q-23)

passes through the point of intersection of the asymptdt€s bse this result, with the diagrams
you have drawn, to show thatif < % then the equation

X2+ ox+ 1
2X+ 3

has no real solution if| has the value found in pait), but has 2 real distinct solutionsdf= 3.

[4]

3; . 1
=AX+ 34 +35(q-23)

OR

The curveC has equation
1 3
y=x -2+ 1,
wherel > 0 and 0< x < 3. The length ofC is denoted by. Prove thas = 2+/3. [4]

The area of the surface generated wiidn rotated through one revolution about thaxis is denoted
by S. FindSin terms ofA. [5]

They-coordinate of the centroid of the region boundedl)yhe axes and the line= 3 is denoted by

3
h. Given thatJ y2dx = % + 8—\5/?% + 312, show that
0

) S
M s =4 (5]
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